В «Норникеле» реализуется проект использования содержимого своих хвостохранилищ — их у компании пять, и это только действующие — для поглощения диоксида углерода из атмосферы. Это одно из возможных перспективных направлений по снижению углеродного следа без привлечения инвестиций для реализации проекта, так как процесс происходит в действующих гидротехнических сооружениях — хвостохранилищах.
Естественный процесс минерализации
Процесс минерализации ультраосновных и основных пород естественный в природе. Ультраосновными и основными называют особый отряд горных пород, в которых высокое содержание кремнезёма и оксида магния. Способность таких пород поглощать углекислый газ при выветривании — продолжительном контакте с атмосферным воздухом — была известна давно и описана в научной литературе. Взаимодействуя с водой и воздухом, углекислый газ связывается с минералами и металлами, которые присутствуют в составе таких пород, в результате образуются карбонаты. То есть СО2 из атмосферы переходит во вторичные минералы в виде карбонатов.
Практического значения эти процессы долгое время не имели, поэтому тема глубоко особо и не изучалась. Всё изменила новая климатическая повестка, которая выдвинула на передний край задачу сокращать антропогенное воздействие на климат за счёт внедрения различных технологий обеспечения углеродной нейтральности. Однако все они, как правило, имеют высокие или капитальные, или операционные затраты, или и то, и другое вместе взятое, а потому и не внедряются в практику повсеместно. Например, вовлечение диоксида углерода в создание химической продукции требует существенных вложений в организацию целой цепочки — от локального сбора таких выбросов до их очистки (с выделением СО2) и затем уже сопутствующей переработки. А для захоронения выбросов парниковых газов (Carbon Capture & Storage) эту цепочку придётся достраивать процессами компримирования и транспортировки СО2 до полигонов.
История вопроса
«В «Норникеле» оценивали все эти технологии и выяснили, что, например, в условиях Норильска транспортное плечо до отработанных скважин «Норильскгазпрома» от источников выбросов может достигать минимум 260 км. Диоксид углерода может транспортироваться на большие расстояния только посредством трубопровода и к самому процессу предъявляются строгие требования в части конструктивного исполнения оборудования (трубопроводы, насосы, вспомогательное оборудование), — прокомментировал Андрей Чеботаев, директор департамента реализации программ по устойчивому развитию.
Возможность использования для фактического захоронения СО2 ультраосновных пород первыми стали изучать алмазодобывающие компании, что логично — они разрабатывают месторождения кимберлита, коренной алмазосодержащей руды (и типичной ультраосновной породы), способной поглощать углекислый газ при контакте с атмосферным воздухом при наличии влаги. Один из лидеров отрасли — компания De Beers — в 2016–2018 годах совместно с ведущими научными центрами Австралии, Канады и США провела исследования поглотительной способности кимберлитовых пород южноафриканских (Venetia, Voorspoed) и канадских (Gahcho Kué, Victor и Snap Lake) месторождений. Результаты показали, что в зависимости от химического состава (кимберлиты демонстрируют значительное минералогическое разнообразие) поглощение СО2 может варьироваться от 4,7 до 24 масс.%, а среднее значение составляет 13,8 масс.%. В переводе на килограммы речь идёт о 47–240 кг CO2 на 1 тонну переработанной руды при среднем значении в 138 кг.
Российские компании также приступили к оценке возможности использования отработанных кимберлитовых пород в качестве средства улавливания и захоронения углекислого газа из атмосферы. В ходе первых исследований проб кимберлита было установлено, что содержание карбонатов в течение 10 лет пребывания породы в хвостохранилище может достигать 15 масс.%.
Пробы хвостов для анализа: замер для металлургических исследований отбирается при разработке рудных проектов
«Норникель» ежегодно перерабатывает огромные объёмы руды и породы, включающие ультраосновные и основные, что и позволяет предварительно судить о протекании аналогичных процессов минерализации. Поэтому потенциал поглощения СО2 из атмосферы породой может достигать значения от нескольких сотен тысяч до нескольких миллионов тонн в год. Однако химические составы хвостов у компаний, конечно, имеют различия, которые могут влиять на отклонения в большую или меньшую сторону. Поэтому в департаменте технологических инноваций ГМК «Норильский никель» реализуется проект, направленный на оценку потенциала компенсации выбросов парниковых газов, сделанных предприятиями компании, за счёт естественной минерализации хвостов, то есть пустой породы, получаемой в результате процессов обогащения руд. Уникальность проекта именно в этом, естественную минерализацию конкретно «Норникеля» для снижения углеродного следа не изучали.
В 2021 году компания добыла 41,2 млн тонн руды. В процессе обогащения руды образуется пустая порода — хвосты. Сами по себе хвосты представляют из себя тонко измельченную породу фракции менее 0,4 мм (около 60% менее 0,074 мм), что-то вроде очень мелкого песка, которая ещё на обогатительной фабрике в виде пульпы (обводнённые хвосты) отводится по трубопроводу до хвостохранилищ. Там она уже целенаправленно разливается специальными направляющими «кранами» по всей площади, чтобы заполнить эти резервуары равномерно.
Интересно, что по факту «Норникель» уже сейчас интенсифицирует процессы минерализации.
Во-первых, если в естественных условиях карбонаты формируются из тех горных пород, что находятся на поверхности, либо выходят наружу (из-за селей, оползней и т.д.), то в случае с хвостами субстанция тонкого помола, у которой поверхность контакта с воздухом увеличивается, поэтому процессы развиваются быстрее, чем в природе — это достигается за счёт непосредственной деятельности обогатительных фабрик. Во-вторых, хвосты хранятся в обводнённом виде (это делается специально, чтобы не допустить пыления). В-третьих, процесс заполнения хвостохранилищ не останавливается, соответственно, нижние слои опускаются ниже (и там идёт накопление карбонатов), а сверху содержимое постоянно обновляется.
«И вот так постепенно, слой за слоем, идёт наращивание объёмов СО2. А верхние слои обновляются, тем самым процесс поглощения идёт непрерывно»,
По его словам, цель исследования — чёткая оценка поглотительной способности хвостов «Норникеля». То есть компания хочет получить конкретную цифру, во-первых, сколько килограммов СО2 сможет поглощать тонна пустой породы, во-вторых, высчитать примерный объём уловленного СО2 за всё время работы как действующих, так и закрытых хвостохранилищ. На выходе, конечно, компания хочет понять, сколько тонн СО2 она ежегодно улавливает из атмосферы, чтобы в дальнейшем вычесть полученные цифры из объёмов ежегодно совершаемых выбросов парниковых газов предприятиями «Норникеля».
На сегодняшний день проведены буровые работы на хвостохранилищах «Лебяжье» (самое крупное по площади в компании) и №1 НОФ (которое работало с 1950-х и было закрыто ещё в 1970-х, но естественные процессы там, понятное дело, не прекращались). В итоге было собрано 200 проб для исследования процессов естественной и искусственной минерализации пустой породы. Эти два объекта в качестве первых были выбраны специально, чтобы исследовать накопление карбонатов и в самом старом, и в наиболее активно действующем (то есть постоянно обновляемом) хвостохранилищах. Керны забирались в разных точках, на глубину до самого дна (это максимально 50 метров), чтобы оценить, как процессы минерализации проходят в поверхностных слоях, и как за годы существования хвостохранилища менялся минералогический состав карбонатов, которые образовались на поверхности, но давно ушли в глубину.
Также отобраны образцы хвостов на хвостохранилище ТОФ и непосредственно на фабрике образцы входящего сырья и выходящей пульпы, и продолжаются отборы на других площадках (действующей ОФ Кольской ГМК в Заполярном (Мурманская область), а также на Быстринском ГОКе в Забайкалье (который работает всего пять лет, поэтому обладает самыми «юными» хвостами). Далее в профильном институте проведут анализ минералогического и элементного состава собранных проб с оценкой содержания поглощённого СО2.
«На сегодняшний день мы активно приступили к исследованию процесса минерализации. Также в планах — разработать методику оценки и расчёта углеродных единиц на базе полученных результатов, которая станет основой для создания стандарта по учёту углеродных единиц. На выходе мы получим методологию, которая позволит оценивать поглотительную способность хвостов исходя из минералогического состава тонны добытой руды. Тем самым мы будем понимать, сколько мы переработали тонн руды и сколько CO2 поглотили»,
Искусственная (ускоренная) минерализация
«Норникель» поставил перед собой амбициозные цели в сфере климата, причём в феврале 2022-го эти цели были пересмотрены в сторону усиления. Так, снижение объёмов выбросов парниковых газов (ПГ) (охват 1+2) теперь должно составить 25% до уровня 7,7 млн тонн в год, и уже к 2028 году (с нынешних 10,3 млн тонн, в объёме которых на производство приходится 9,1 млн тонн, остальное — на выбросы от обеспечения населения теплом и электроэнергией). И это с учётом планируемого роста производства и реализации «Серной программы»!
К 2030 г. комплекс по объему добычи и переработки достигнет мощности 18 млн т руды в год. С этой целью было запущено строительство третьего поля хвостохранилища «Лебяжье» (на фото)
«Одним из способов достижения климатических целей, конечно, должна стать масштабная программа модернизации энергетических мощностей. Так на Кольском полуострове компания, проводит работы по снижению потребления мазута и твёрдого восстановителя при ведении технологических процессов. Однако изучают в «Норникеле» и другие способы, в том числе и инновационные. Искусственная минерализация в перспективе позволит дополнительно сократить количество выбрасываемого СО2, связав его из выбросов в безопасные соединения — карбонаты»,
Совместно с учёными «Норникель» разрабатывает и технологии искусственной (ускоренной) минерализации хвостов. Алмазодобывающие компании, например, в рамках пилотных испытаний тоже тестировали ускоренную минерализацию путём прокачки CO2 через пульпу породы и воды. Такое может найти применение и на площадках «Норникеля»: например, через пульпу можно будет пропускать дымовые газы ТЭЦ или технологические газы плавильных печей, содержащие, в том числе, и СО2. В итоге это позволит значительно увеличить потенциал поглощения.
Для этого на базе лабораторной установки смоделируют процесс искусственной минерализации в различных вариантах, включая пропускание (барботаж) через пустую породу газа, содержащего от 5 до 50% СО2, и стопроцентное насыщение углекислым газом в химической камере с определением поглотительной способности породы по диоксиду углерода — углеродоёмкости породы.
«Снижение углеродного следа продукции актуальная тема для «тяжёлой индустрии» во всём мире. Уже есть примеры производителей, которые для снижения выбросов парниковых газов все свои дымовые выбросы пропускают через установки улавливания диоксида углерода с дальнейшим компримированием для транспортировки до мест захоронения — например, для закачки CО2 в пустой газоносный пласт. Мы же можем попробовать пропустить СО2 через хвостохранилище и проанализировать эффективность нашего агента поглощения. Если технология докажет свою состоятельность, то в рамках реализации стратегии в области экологии и изменения климата можно рассмотреть масштабирование данного решения на всех действующих объектах компании»,
В целях у «Норникеля» в рамках управления хвостохранилищами есть и такие направления, как ликвидация накопленных отходов и увеличение доли утилизации минеральных отходов, то есть образованные на хвостохранилищах хвосты (в т.ч. образующиеся карбонаты) будут вовлекать в существующие технологические пределы компании, к примеру, применять в качестве добавок в закладочные смеси для выработок в рудниках.