Воскресенье, Май 28, 2023
Учёные «ЦНИИчермет» меняют железные дороги

23.03.2023

Люди / Эксперты

Учёные «ЦНИИчермет» меняют железные дороги

Эксклюзивное интервью с профессором Георгием Филипповым

Профессор Георгий Филиппов, директор Научного центра качественных сталей в составе Государственного научного центра ФГУП «ЦНИИчермет им. И.П. Бардина», много лет посвятил созданию материалов для железнодорожного транспорта. 

В «ЦНИИчермет» он трудится с 1970 года, больше полувека. И больше двух десятилетий из них помогает развитию материалов для железных дорог. Труды Филиппова, руководителя научной школы конструкционных сталей и сплавов, не только экономят родине миллиарды — они помогают сделать транспорт более безопасным, предотвратить аварии.

— Георгий Анатольевич, вас в конце прошлого года отметила престижной премией имени Бардина Российская академия наук. Какие именно работы так оценили?

— За комплекс работ по созданию материалов и инновационных технологий металлопродукции для железнодорожного транспорта. В основном речь идёт об успешных работах за четверть столетия, с девяностых годов прошлого века, по двум основным наиболее металлоёмким направлениям — по рельсам и колёсам. 

Почему я их так называю? Объём их ежегодного потребления в стране просто колоссален. До полутора млн тонн рельсов. И это только на поддержание имеющейся сети, не считая строительства новых веток. Колёс около миллиона тонн.

До распада Союза вся тематика по железнодорожному транспорту и по подшипникам концентрировалась на Украине — там действовали специализированные институты: «УкрНИИспецсталь» занималась подшипниками в Запорожье, колёсными проблемами — Институт чёрной металлургии в Днепропетровске, рельсами — Харьковский научно-исследовательский институт металлов. 

Но СССР распался. И России пришлось создавать по этой теме свою научную школу. Так как новые условия требовали иных технологий и подходов... и новых сталей.


фото из открытых источников

До 1992 года вся тематика по железнодорожному транспорту и по подшипникам концентрировалась на Украине. На фото Институт чёрной металлургии в Днепропетровске.

фото из открытых источников

— Колесо и рельс взаимодействуют друг с другом, их надо совершенствовать в паре?

— Да, и за недостаточное понимание этого иногда приходилось дорого платить. В девяностые годы повысилось качество рельсов. И тут же резко увеличился износ железнодорожных колёс! С этим срочно нужно было что-то делать. 

Основные качества, которые определяют эксплуатационный ресурс колеса и рельса, — это твёрдость и прочность. Чем выше твёрдость, тем меньше износ. А она в первую очередь зависит от содержания в стали углерода. Твёрдость рельсов повысилась, отчего бы не повысить твёрдость колёс самым доступным способом — термической закалкой, думали неспециалисты в этой сфере. 

Начали экспериментировать и... получили серию крушений товарных поездов (к счастью, эксперименты шли на грузовых вагонах). Металл так просто не сдаётся — сталь получалась слишком хрупкая. И тогда привлекли меня, как специалиста по хрупкому разрушению стали. Мне пришлось изучать причины аварий.

До смешного: рабочие на складе боялись подходить к «усовершенствованным» колёсам: «А они иногда взрываются!». То есть колесо ещё не под вагоном, без нагрузки, но высокий уровень остаточных напряжений — и оно самопроизвольно разрушается!


фото РИА Новости

Колесо и рельс всегда разрабатываются вместе. Это как два сапога пара.

фото РИА Новости

— И вы предложили свой способ?

— Да... Дело в том, что забыли ещё об одном свойстве, которое необходимо было принимать в расчёт — о вязкости металла. Более жёсткие условия термической обработки повышали твёрдость колеса, но снижали вязкость. И колеса разрушались быстрее. 

К слову, у рельса и колеса твёрдость не должна быть одинаковой: для оптимального режима, в котором они меньше всего изнашиваются, разница должна составлять примерно 10%. Но не более.

Что касается колёс, то мы, разобравшись с причинами, подошли к вопросу системно. Необходимо было избавить колёсную сталь от вредных примесей, от неметаллических включений, способствовавших её охрупчиванию.

Работали с заводом-изготовителем железнодорожных колёс. Там поставили вакууматор, осваивали получение вакуумированной стали. Особенно неблагоприятен в этом плане для стали газ водород (в металлургии есть даже понятие «водородная хрупкость»). Не сразу научились его удалять. Был момент, когда завод отзывал уже выпущенные колёса — был риск охрупчивания и разрушения. Но технология в итоге была освоена.

И тогда занялись улучшением свойств стали за счёт легирования — по углероду, по хрому, также с помощью микролегирования. И твёрдость колёс мы тоже подняли без риска их катастрофического разрушения.

В результате наш коллектив предложил новые марки стали. В железнодорожном транспорте возникла своя классификация стали. Обычно начинают марку с содержания углерода, а потом идут цифровые и буквенные обозначения использованных легирующих добавок. А у железнодорожников, до того, как мы этим начали заниматься, были две марки стали в ГОСТе, по-простому: № 1 и № 2. 

Первая — в основном для пассажирских вагонов, вторая — для грузовых. Мы подошли иначе, предложили не присваивать новым сталям номера 3, 4 и так далее, а определять по уровню твёрдости: марка Т — твёрдые колеса, повышенной твёрдости. Так родилась марка Т, она сейчас в ГОСТе. А пассажирские колёсные стали маркируем «Л», т.е. лёгкие.


фото РИА Новости

ФГУП «ЦНИИчермет им. И.П. Бардина» много сделал для улучшения качества стали для железнодорожных колес.

фото РИА Новости

— То есть вся страна на ваших колёсах сейчас катается?

— Ну, не совсем так. Наши колёса меньше подвергаются износу, но они и несколько дороже. Кто там чего заказывает из перевозчиков, как калькулирует оптимальные для себя затраты — тут всё индивидуально. 

Но больше сорока процентов колёс в России, как пассажирских поездов, так и товарных, из нашей стали — за это, пожалуй, могу ручаться. Особенно те, где нужна повышенная нагрузка на ось, большая грузоподъёмность. И эффект на многие миллиарды, ведь когда колёса меняют, вагоны находятся в простое. Чем реже это нужно делать, тем выгоднее.

Завод-изготовитель железнодорожных колёс работал и на экспорт, поставлял их в Европу и США, где у колёс своя маркировка (повышенная твёрдость — класс D). Нам была поставлена задача научиться выпускать колёса, сопоставимые с ультратвёрдой маркой D. В чём-то это было сложно, в чём-то проще... 

Дело в том, что у российских колёс есть особенность — они ещё должны быть рассчитаны на большие температурные перепады, от морозов Восточной Сибири до жары субтропиков. В США такой необходимости и такого требования в стандартах нет. Так что мы отработали по экспортной колёсной тематике.

— И опять занялись рельсами?

— Мы и колёсами продолжаем заниматься, так как меняется сам транспорт. Например, широко распространяются высокоскоростные дороги, для которых Выкса с нашей помощью освоила выпуск колёс. Там иные требования из-за отличающихся условий эксплуатации: при больших скоростях пришлось не твёрдость повышать, а вязкость...

Но вы правы, рельсами также пришлось заниматься. Изменилась сама технология их изготовления. Потому что при Советском Союзе они в основном были длиной по 25 метров и к ним применяли объёмное закаливание, опуская в масло. А сейчас рельсы производятся стометровыми. 


фото из открытых источников

Укладка рельсов в СССР.

фото из открытых источников

Закаливание в масле к тому же было не очень экологичным, так как оно испарялось. Но это ещё полбеды. Попробуй, построй стометровую масляную ванну для закаливания и опусти туда такого размера рельс после прокатки! Малореально.

И начали рельсы закаливать по-иному — технология называется дифференцированная термическая обработка. Рельс производится в потоке стана, а после прокатки подвергается принудительному охлаждению. Но не вся его поверхность, а только головка (верхняя часть, которая будет соприкасаться с колесом) и подошва, что снизу. Поскольку производится закалка только отдельных элементов рельса, то и возможности управления этим процессом существенно ниже.

Те стали, которые были когда-то разработаны для объёмного закаливания, перестали соответствовать современным требованиям. Их надо было модифицировать, изменять в том числе химический состав металла, чтобы обеспечить нужные свойства.

В Казахстане был построен рельсобалочный завод в Актобе (бывшем Актюбинске). Стальную заготовку для рельсов он получал с металлургического завода в Старом Осколе («Металлоинвест») и с металлургического комбината в Новотроицке (ныне это компания «Уральская сталь»).

Нам поступил «тройственный» заказ от этих предприятий — по анализу оборудования и разработке сквозной технологии производства рельсов. Мы это сделали: наша технология обеспечивает выход годной продукции 97–100% — разработка получила золотую медаль Международный выставки «Металл-Экспо».


фото автора

Георгий Филиппов и сейчас продолжает трудиться на благо всего железнодорожного транспорта.

фото автора

— Рельсы и колёса — это очень важно. Но у РЖД есть ещё одна болевая точка: подшипники. Вы подшипниковой сталью занимались?

— Да, вы правы, это очень большая проблема. И, конечно, мы этим вопросом тоже занимаемся. Главная проблема, собственно, в чём? Многие предприятия, которые в Советском Союзе занимались спецсталями, перестали их выпускать. Или простаивали, теряя компетенции, а оборудование, которое не использовали, устаревало... 

Далеко не для всяких подшипников подойдёт сталь обычных сортаментов. А как же судостроение, авиастроение, те же железные дороги и так далее? Высоколегированные подшипниковые стали приходится подвергать электрошлаковому переплаву, чтобы очистить от вредных примесей. Можно по пальцам пересчитать заводы, которые в России это умеют, а поскольку компетенции отчасти утрачены, порой при выплавке возникает брак.

Кроме того, поскольку стали эти высокоуглеродистые, возникает такой эффект, как карбидная неоднородность — дефекты микроструктуры стали, когда неравномерно распределены концентрации карбидов, что делает металл более хрупким...

В сотрудничестве со специалистами «Северстали» мы разработали состав стали с более низким содержанием углерода, чем стандартные, компенсировали это легированием, причём не очень дорогим. Поэтому карбидной неоднородности эта марка лишена. Мы её назвали ШХ7СГ. 

Когда рассказываю о ней на разных совещаниях, скромно говорю, что подшипники из неё служат минимум в 2-3 раза дольше. Реально же, как показали стендовые испытания на двух предприятиях... до пяти раз! Считаю оптимальным уравнять срок службы подшипника и колеса вагона, чтобы их можно было менять одновременно и не допускать дополнительных простоев. Вот это было бы по-настоящему удобно.


Алексей Василивецкий


Больше оперативных новостей читайте в Telegram-канале @ПРОметалл.

Теги: вагоны, Россия, научное открытие, ЦНИИчермет им. И.П. Бардина

Последние публикации

26.05.2023

Азиатская жара на руку российским производителям угля
Эль-Ниньо и РЖД работают в разные стороны

26.05.2023

Как сократить энергозатраты при производстве лития?
Стартапы и гиганты горнодобывающей отрасли работают над технологией прямого извлечения металла

26.05.2023

Электромобили не спасут экологию
Главный экотренд XXI века может оказаться самообманом

25.05.2023

Денис Мантуров загрузил металлургов по полной
Об особенностях чиновничьей математики
PROMETALL TG
PROMETALL TG