Вторник, Сентябрь 16, 2025
14.09.2023

Новые алгоритмы для идентификации автомобилей распознают засвеченные и смазанные номера

Ученые Университета науки и технологий МИСИС совместно со специалистами компании «СИТИЛАБС» усовершенствовали алгоритмы камер видеонаблюдения, определяющие смазанные и засвеченные номера автомобилей. Предварительная классификация качества изображения существенно экономит вычислительные ресурсы и повышает точность работы всей системы видеонаблюдения. Модули кроссплатформенные, их можно установить на различные устройства. Эта разработка может быть с успехом использована, как на дорогах общего назначения, так и на некоторых горнопромышленных объектах.

Одной из важных задач, возникающих при анализе дорожно-транспортных ситуаций, в том числе и в условиях технологических дорог, является идентификация конкретного автомобиля по государственному регистрационному знаку. Зачастую из-за высокой скорости машины, яркого света фар, запылённости, а также недостаточных возможностей камеры машины распознаются некорректно. Своевременное отсеивание заведомо некорректных изображений номеров позволяет не задействовать впустую вычислительные ресурсы для распознавания, а также снижает вероятность ошибочного распознавания.

Для определения степени засвеченности автомобильного номера специалисты предлагают использовать анализ гистограммы яркостей. Для детектирования как транспортных средств, так и автомобильных номеров используется хорошо известная нейронная сеть yolo-v5.

«Для идентификации автомобилей и номеров при обучении нейронных сетей формировались датасеты с учетом времени суток, сезонности и погоды. После определения области гос.знаков на изображении, выбранный участок из трехмерного цветового пространства RGB сводится к одномерному «серому». После подсчета гистограммы выделяется та ее часть, которая будет отвечать за «пересвеченность», таким образом, 95,7% номеров верно классифицировались как засвеченные. Для определения степени смазанности была построена нейронная сеть с уникальной архитектурой, которая обеспечивает точность классификации 96,4% при минимальном времени обработки 0,073 мc на ПК», - говорит д.т.н. Игорь Тёмкин, заведующий кафедрой автоматизированных систем управления (АСУ) НИТУ МИСИС.

Отдельной задачей в ходе работы над нейронной сетью для определения смазанности было создание датасета для обучения. Условия, при которых изображения получаются смазанными, являются специфичными, и чтобы отобрать из огромного количества данных те, которые были пригодны для класса смазанных номеров, уходит большое количество времени.

Разработанный алгоритм, помимо классификации на читаемые и нечитаемые изображения, дает также количественную оценку степени смазанности и засвеченности. Эти данные в свою очередь могут быть использованы для корректировки параметров камеры, таких, как значение выдержки и диафрагмы, что позволит повысить качество последующих кадров.

«На промышленных предприятиях системы стационарного видеонаблюдения находят достаточно широкое применение. Идентификация самосвалов на основе анализа видеокадров актуальна для контроля за въездом, выездом и перемещением транспорта по карьерам, в которых добываются нерудные строительные материалы: щебень, песок, гравий. При этом к точности распознавания номеров предъявляются достаточно жесткие требования», - отмечает соавтор разработки Владислав Епифанов, аспирант кафедры АСУ Университета МИСИС.

В ходе экспериментов предложенные подходы показали свою эффективность на различных устройствах, таких как ПК и микрокомпьютер Nvidia Jetson Nano. Предложенные методы применимы к использованию как в серверных решениях, так и в мобильных «коробочных» решениях, где камера и вычислительное устройство представляют собой единое устройство.

Больше оперативных новостей читайте в Telegram-канале @ПРОметалл.

Последние публикации

16.09.2025

В отрасли кризис, а акционеры богатеют. Возможно ли такое в принципе?
Два измерения одной экономики: рейтинги Bloomberg и реальная металлургия

15.09.2025

Иранская металлургия развивается несмотря на санкции
Mobarakeh Steel Company укрепляет своё положение на мировом рынке

15.09.2025

Россию ждёт рост добычи кобальта
Только вот как его использовать?

12.09.2025

Как лучше развивать отрасль РЗМ: через рынок или господдержку
На форуме в Москве обсудили, что может дать ей новый импульс